SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Thermal Engineering (20ME0305)

Year & Semester: II-B. Tech & I-Semester

Regulation: R20

UNIT-I 1 a Derive an expression for minimum work required for two stage reciprocating air L3 CO₁ 6M Compressor with perfect inter-cooling and neglect clearance volume. b A single stage single acting air compressor has an effective swept volume of 5m³/min L3 CO₁ 6M and delivers to a receiver pressure of 6.5 bar. The index of compression is 1.2, and the temperature at the end of suction stroke is 35°C and pressure is 1.03 bar. Calculate: (i) The mass of compressed air per minute (ii) The Temperature at the end of Compression. Take R=0.287 KJ/Kg K. 2 a With the help of neat sketch explain the working principle of single stage L2 CO₁ 6M Reciprocating air compressor. b With the help of neat sketch explain the working principle of multi stage L2 CO₁ 6M reciprocating air compressor with effect of intercooler. 3 a With the help of neat sketch, explain the working of vane type compressor. L2 CO1 6M b A single stage reciprocating air compressor is required to compress 80 m³ of air from L3 CO₁ 6M 1 bar abs to 10 bar abs. Find the work to be supplied if the law of expansion is PV^{1.25}=Constant. a A two stage air compressor compresses air from 1 bar and 20°C to 42 bar. If the law L3 CO₁ 6M of compression is pv1.3 = constant and the inter cooling is perfect. Find per kg of air (i) The work done in compression. b Derive the relation for work done on single stage reciprocating compressor without L3 CO₁ 6M Clearance. 5 Derive the relation for Volumetric efficiency of a single stage reciprocating L3 CO₁ 12M Compressor. a What are the various classifications of air compressors L2 6 CO₁ 6M b Explain the working of any two Rotary compressors with neat sketch. L2 CO1 6M 7 An air compressor cylinder has 150mm bore and 150mm stroke and the clearance is L3 CO₁ 12M 15%. It operates between 1 bar, 27°C and 5 bar. Take polytropic exponent n=1.3 for compression and expansion processes. Find (i). Cylinder volume at the various salient points of in cycle.

(ii). Flow rate in m3/min at 720 rpm.

(iii). Volumetric efficiency.

8	A single –stage double –acting air compressor is required to deliver 14 m3 of air per	L3	CO1	12M			
	Minute measured at 1.013 bar and 150°C. The delivery pressure is 7 bar and the speed						
	300 r.p.m. Take the clearance volume as 5% of the swept volume with the						
	compression and expansion index of 1.3						
	Calculate:						
	(i). Swept volume of the cylinder;						
	(ii). The delivery temperature;						
	(iii). Indicated power.		G0.1	403.5			
9	Air from an initial condition of 25°C and 1 bar abs is compressed in 2 stage according	L3	CO1	12M			
	to law PV ^{1.25} =constant and with complete intercooling to a pressure of 36 bar abs.						
	Estimate the minimum work required and heat rejected in the intercooler per kg of air.						
10	Assume C _P =1.05KJ/Kg and R=0.29KJ/Kg K.	1.0	GO 1	10) (
10	Derive an expression for minimum work for two stage reciprocating air compressors.	L3	CO1	12M			
<u>UNIT-II</u>							
1	Derive the expression for the efficiency of Brayton cycle in terms cycle parameters.	L3	CO2	12M			
2	In an oil gas turbine installation, air is taken at 1bar and 30°C. The air is compressed	L3	CO2	12M			
	to 4 bar and then heated by burning the oil to a temperature of 500°C.If the air flows						
	at the rate of 90Kg/Minute , find the power developed by the plant. Take γ for air as						
	1.4 and C _p as 1KJ/KgK.						
3	Air enters the compressor of a gas turbine plant operating on Brayton cycle at 1 bar,	L3	CO2	12M			
	27°C. The pressure ratio in the cycle is 6. Calculate the maximum temperature in the						
	cycle and the cycle efficiency. Assume the turbine work as 2.5 times the compressor						
	work. Take γ =1.4						
4	Brief the working of Brayton Cycle with the help of p-v diagram and T-s diagram.	L2	CO2	12M			
5	Explain the working of Open Cycle Brayton cycle with neat sketch.	L2	CO2	12M			
6	Explain the working of Closed Cycle Brayton cycle with neat sketch.	L2	CO2	12M			
7	In a Gas turbine plant, the air is compressed in a single stage compressor from 1 bar	L3	CO2	12M			
	to 9 bar and from an initial temperature of 300K. The same air is then heated to a						
	temperature of 800K and then expanded in the turbine. The air is then reheated to a						
	temperature of 800K and then expanded in the second turbine. Find the maximum						
	power that can be obtained from the installation, if the mass of air circulated per						
	second is 2Kg. Take $C_p=1$ KJ/Kg.						
8	Explain various methods of Improving Brayton Cycle Efficiency.	L2	CO2	12M			
9	A gas turbine plant consists of two stage compressor with perfect intercooler and a	L3	CO2	12M			
	single stage turbine. If the plant works between the temperature limits of 300K and						
	1000K and 1 bar and 16 bar. Find the power of the plant per kg of air. Take specific						
	heat at constant pressure as 1KJ/Kg K.						

Course Code: 20ME0305		F	R20		
10		Explain Reheat and Intercooling Brayton cycle with neat sketch. <u>UNIT-III</u>	L2	CO2	12M
1	a	Define Steam nozzle and also explain about expansion of steam in nozzle with neat	L2	CO3	6M
	b	sketch. Explain various types of nozzles with neat sketches.	L2	CO3	6M
2	a	Explain about super saturated flow in nozzles with neat sketch. And represent in	L2	CO3	6M
		H-S diagram.			
	b	What are the effects of friction on flow through nozzle?	L2	CO3	6M
3		Determine the throat area, exit area and exit velocity for a steam nozzle to pass 0.2kg/s when the inlet conditions are 12 bar and 250°C and final pressure is 2bar. Assume that the expansion is isentropic and inlet velocity is negligible. Take n=1.3 for superheated steam.	L3	CO3	12M
4	a	Derive an expression for velocity of steam at exit of nozzle.	L3	CO3	8M
	b	Write a relation for calculating Mass flow rate of steam through nozzle.	L3	CO3	4M
5		Derive an expression for condition of maximum discharge through a nozzle.	L3	CO3	12M
6	a	Dry saturated steam enters a frictionless adiabatic nozzle with negligible velocity at a	L3	CO3	6M
		temperature of 300°C. It is expanded to a pressure of 5000KPa. The mass flow rate is			
		1Kg/s. Calculate the exit velocity of steam.			
	b	Dry saturated steam enters a steam nozzle at a pressure of 15 bar and is discharged at	L3	CO3	6M
		a pressure of 2 bar. If the dryness fraction of discharge steam is 0.96, what will be			
7		final velocity of steam?		002	103.4
7		Dry saturated steam at a pressure of 11 bar is Expanded in a nozzle to 2 bar. If the	L3	CO3	12M
		flow is isentropic, determine, (i) the throat velocity (ii) exit velocity (iii) ratio of cross			
8		sectional area from exit to throat. A steam nozzle passes 0.3kg/s when the inlet conditions are 14 bar and 300 ^o C and	L3	CO3	12M
o		final pressure is 2.5bar. Assume that the expansion is isentropic and inlet velocity is	LS	CO3	1 2111
		negligible. Determine throat area, exit area, dryness fraction and exit velocity. Take			
		n=1.3 for superheated steam.			
9		Explain about Surface condenser and discuss its types with neat sketches.	L2	CO3	12M
10		Explain about jet condenser and various types of jet condenser with neat sketches.	L2	CO3	12M
		UNIT-IV			
1	a		L2	CO4	8M
	b	Derive an expression for work done in impulse turbine.	L3	CO4	4M
2	a	Draw and explain the velocity triangle of reaction turbine.	L2	CO4	8M
	b	Derive an expression for work done in reaction turbine.	L3	CO4	4M
3		Draw the combined velocity triangle of Impulse turbine and explain the salient	L2	CO4	12M
		features.	_		
4		Draw the combined velocity triangle of Parson's reaction turbine and explain the	L2	CO4	12M
		salient features.			

(Course Code: 20ME0305		R20		
5		The following data refers to a single stage impulse turbine; Steam velocity = 800m/s; Blade speed=300m/s; Nozzle angle=20 ⁰ ; Blade outlet angle=25 ⁰ . Neglecting effect of friction, calculate the power developed by the turbine for the steam flow rate of 25Kg/s. Also calculate the axial thrust on the bearings.	L3	CO4	12M
6		In a De-Laval turbine, steam issues from the nozzle with a velocity of 1200m/s. The nozzle angle is 20 ⁰ , the mean blade velocity is 400m/s. The inlet and outlet angles of blades are equal. The Mass of steam flowing through turbine per hour is 1200kg.Calculate Force on blade and Power developed.	L3	CO4	12M
7	a	What are the various losses in steam turbines? Explain them Briefly.	L2	CO4	6M
	b	Explain Throttle Governing in steam turbines with neat sketch.	L2	CO4	6M
8		Explain Nozzle Governing and Bypass Governing in steam turbines with neat sketches.	L2	CO4	12M
9		Distinguish between impulse and reaction turbines.	L2	CO4	12M
10		Explain Compounding and its types with appropriate sketches.	L2	CO4	12M
		<u>UNIT –V</u>			
1	a	Explain any six classifications of Internal Combustion engines.	L2	CO5	6M
	b	With a neat sketch explain any three parts in Internal Combustion engine	L2	CO5	6M
2	a	Draw theoretical and actual valve-timing diagram for 4 stroke engine.	L2	CO5	6M
	b	Draw Theoretical and actual port timing diagrams of a 2 stroke engine.	L2	CO5	6M
3	a	Explain the Working Principle of 2-Stroke Engine.	L2	CO5	6M
	b	Brief the Working Principle of 4-Stroke SI Engine.	L2	CO5	6M
4		Compare 2-stroke engine with 4-stroke engine.	L2	CO5	12M
5		The following readings were taken during the test of a single cylinder four stroke oil engine: Cylinder diameter=250mm,Stroke Length=400mm,M.E.P=7bar, Engine Speed=250rpm, Net Load on the brake=1080N,Effective diameter of the brake=1.5 metres, Fuel used per hour=10Kg, calorific value fo fuel=44300Kj/Kg. Calculate (i)Indicated Power (ii) Brake Power (iii) Mechanical Efficiency (iv) Indicated thermal efficiency	L3	CO5	12M
6	B	riefly explain various methods of Measuring Fuel Consumption.	L3	CO5	12M
7		During a test on single cylinder oil engine, working on four stroke cycle and fitted with a rope brake, the following readings are taken. Effective diameter of brake wheel =630mm, Effective Brake Load=170N,Engine Speed=450 rpm, Area of Indicator Diagram= 420mm ² ,Length of indicator diagram=60mm,Spring Constant=1.14 bar/mm, Cylinder Diameter=100mm, Stroke=150mm,Quantity of oil	L3	CO5	12M

Course Code: 20ME0305

used=0.815Kg/hr, Calorific Value of oil used=42000KJ/Kg. Calculate (i) IP & BP (ii) Mechanical Efficiency (iii) Brake thermal Efficiency (iv) BSFC.

- A test on a single cylinder 4 stroke Otto cycle engine yields the following L3 CO5 12M data:950Nm Torque, 7.6 bar mean effective pressure, 280mm bore, 305mm stroke, 300 rpm, 0.003Kg/s fuel consumption with heating value of 42000KJ/Kg. Determine:

 (i) Indicated thermal Efficiency (ii) Mechanical efficiency.
- A Diesel Engine developing an IP of 37.5KW consumes fuel of calorific value L3 CO5 12M 45000KJ/Kg at the rate of 9 Kg/hr. If 8.5 KW are absorbed by friction and pumping losses within the engine, determine (i) Brake Power (ii) BSFC (iii) Mechanical Efficiency (iv) Indicated thermal efficiency (v) Brake thermal efficiency.
- 10 Define Brake Power, Indicated Power. Explain various methods of Measuring them. L3 CO5 12M

Prepared By: J.SURESH, A.T.PRAVEEN KUMAR